http://www.ousob.com --- Legacy Redefined OuSob - File: /wwwroot/clipx/usr/include/asm-generic/pgtable.h

#ifndef _ASM_GENERIC_PGTABLE_H #define _ASM_GENERIC_PGTABLE_H #ifndef __HAVE_ARCH_PTEP_ESTABLISH /* * Establish a new mapping: * - flush the old one * - update the page tables * - inform the TLB about the new one * * We hold the mm semaphore for reading, and the pte lock. * * Note: the old pte is known to not be writable, so we don't need to * worry about dirty bits etc getting lost. */ #ifndef __HAVE_ARCH_SET_PTE_ATOMIC #define ptep_establish(__vma, __address, __ptep, __entry) \ do { \ set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ flush_tlb_page(__vma, __address); \ } while (0) #else /* __HAVE_ARCH_SET_PTE_ATOMIC */ #define ptep_establish(__vma, __address, __ptep, __entry) \ do { \ set_pte_atomic(__ptep, __entry); \ flush_tlb_page(__vma, __address); \ } while (0) #endif /* __HAVE_ARCH_SET_PTE_ATOMIC */ #endif #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* * Largely same as above, but only sets the access flags (dirty, * accessed, and writable). Furthermore, we know it always gets set * to a "more permissive" setting, which allows most architectures * to optimize this. */ #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ do { \ set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ flush_tlb_page(__vma, __address); \ } while (0) #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __address, __ptep) \ ({ \ pte_t __pte = *(__ptep); \ int r = 1; \ if (!pte_young(__pte)) \ r = 0; \ else \ set_pte_at((__vma)->vm_mm, (__address), \ (__ptep), pte_mkold(__pte)); \ r; \ }) #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(__vma, __address, __ptep) \ ({ \ int __young; \ __young = ptep_test_and_clear_young(__vma, __address, __ptep); \ if (__young) \ flush_tlb_page(__vma, __address); \ __young; \ }) #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define ptep_test_and_clear_dirty(__vma, __address, __ptep) \ ({ \ pte_t __pte = *__ptep; \ int r = 1; \ if (!pte_dirty(__pte)) \ r = 0; \ else \ set_pte_at((__vma)->vm_mm, (__address), (__ptep), \ pte_mkclean(__pte)); \ r; \ }) #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ ({ \ int __dirty; \ __dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep); \ if (__dirty) \ flush_tlb_page(__vma, __address); \ __dirty; \ }) #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR #define ptep_get_and_clear(__mm, __address, __ptep) \ ({ \ pte_t __pte = *(__ptep); \ pte_clear((__mm), (__address), (__ptep)); \ __pte; \ }) #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL #define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \ ({ \ pte_t __pte; \ __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \ __pte; \ }) #endif #ifndef __HAVE_ARCH_PTE_CLEAR_FULL #define pte_clear_full(__mm, __address, __ptep, __full) \ do { \ pte_clear((__mm), (__address), (__ptep)); \ } while (0) #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH #define ptep_clear_flush(__vma, __address, __ptep) \ ({ \ pte_t __pte; \ __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \ flush_tlb_page(__vma, __address); \ __pte; \ }) #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif #ifndef __HAVE_ARCH_PTE_SAME #define pte_same(A,B) (pte_val(A) == pte_val(B)) #endif #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY #define page_test_and_clear_dirty(page) (0) #define pte_maybe_dirty(pte) pte_dirty(pte) #else #define pte_maybe_dirty(pte) (1) #endif #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG #define page_test_and_clear_young(page) (0) #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE #define lazy_mmu_prot_update(pte) do { } while (0) #endif #ifndef __HAVE_ARCH_MULTIPLE_ZERO_PAGE #define move_pte(pte, prot, old_addr, new_addr) (pte) #else #define move_pte(pte, prot, old_addr, new_addr) \ ({ \ pte_t newpte = (pte); \ if (pte_present(pte) && pfn_valid(pte_pfn(pte)) && \ pte_page(pte) == ZERO_PAGE(old_addr)) \ newpte = mk_pte(ZERO_PAGE(new_addr), (prot)); \ newpte; \ }) #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef __ASSEMBLY__ /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); void pud_clear_bad(pud_t *); void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } #endif /* !__ASSEMBLY__ */ #endif /* _ASM_GENERIC_PGTABLE_H */