http://www.ousob.com --- Legacy Redefined OuSob - File: /wwwroot/clipx/usr/include/asm-i386/elf.h

#ifndef __ASMi386_ELF_H #define __ASMi386_ELF_H /* * ELF register definitions.. */ #include <asm/ptrace.h> #include <asm/user.h> #include <asm/processor.h> #include <asm/system.h> /* for savesegment */ #include <asm/auxvec.h> #include <linux/utsname.h> #define R_386_NONE 0 #define R_386_32 1 #define R_386_PC32 2 #define R_386_GOT32 3 #define R_386_PLT32 4 #define R_386_COPY 5 #define R_386_GLOB_DAT 6 #define R_386_JMP_SLOT 7 #define R_386_RELATIVE 8 #define R_386_GOTOFF 9 #define R_386_GOTPC 10 #define R_386_NUM 11 typedef unsigned long elf_greg_t; #define ELF_NGREG (sizeof (struct user_regs_struct) / sizeof(elf_greg_t)) typedef elf_greg_t elf_gregset_t[ELF_NGREG]; typedef struct user_i387_struct elf_fpregset_t; typedef struct user_fxsr_struct elf_fpxregset_t; /* * This is used to ensure we don't load something for the wrong architecture. */ #define elf_check_arch(x) \ (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486)) /* * These are used to set parameters in the core dumps. */ #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_386 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx contains a pointer to a function which might be registered using `atexit'. This provides a mean for the dynamic linker to call DT_FINI functions for shared libraries that have been loaded before the code runs. A value of 0 tells we have no such handler. We might as well make sure everything else is cleared too (except for %esp), just to make things more deterministic. */ #define ELF_PLAT_INIT(_r, load_addr) do { \ _r->ebx = 0; _r->ecx = 0; _r->edx = 0; \ _r->esi = 0; _r->edi = 0; _r->ebp = 0; \ _r->eax = 0; \ } while (0) #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical use of this is to invoke "./ld.so someprog" to test out a new version of the loader. We need to make sure that it is out of the way of the program that it will "exec", and that there is sufficient room for the brk. */ #define ELF_ET_DYN_BASE (TASK_SIZE / 3 * 2) /* regs is struct pt_regs, pr_reg is elf_gregset_t (which is now struct_user_regs, they are different) */ #define ELF_CORE_COPY_REGS(pr_reg, regs) \ pr_reg[0] = regs->ebx; \ pr_reg[1] = regs->ecx; \ pr_reg[2] = regs->edx; \ pr_reg[3] = regs->esi; \ pr_reg[4] = regs->edi; \ pr_reg[5] = regs->ebp; \ pr_reg[6] = regs->eax; \ pr_reg[7] = regs->xds; \ pr_reg[8] = regs->xes; \ savesegment(fs,pr_reg[9]); \ savesegment(gs,pr_reg[10]); \ pr_reg[11] = regs->orig_eax; \ pr_reg[12] = regs->eip; \ pr_reg[13] = regs->xcs; \ pr_reg[14] = regs->eflags; \ pr_reg[15] = regs->esp; \ pr_reg[16] = regs->xss; /* This yields a mask that user programs can use to figure out what instruction set this CPU supports. This could be done in user space, but it's not easy, and we've already done it here. */ #define ELF_HWCAP (boot_cpu_data.x86_capability[0]) /* This yields a string that ld.so will use to load implementation specific libraries for optimization. This is more specific in intent than poking at uname or /proc/cpuinfo. For the moment, we have only optimizations for the Intel generations, but that could change... */ #define ELF_PLATFORM (system_utsname.machine) #ifdef __KERNEL__ #define SET_PERSONALITY(ex, ibcs2) do { } while (0) /* * An executable for which elf_read_implies_exec() returns TRUE will * have the READ_IMPLIES_EXEC personality flag set automatically. */ #define elf_read_implies_exec(ex, executable_stack) (executable_stack != EXSTACK_DISABLE_X) struct task_struct; extern int dump_task_regs (struct task_struct *, elf_gregset_t *); extern int dump_task_fpu (struct task_struct *, elf_fpregset_t *); extern int dump_task_extended_fpu (struct task_struct *, struct user_fxsr_struct *); #define ELF_CORE_COPY_TASK_REGS(tsk, elf_regs) dump_task_regs(tsk, elf_regs) #define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs) #define ELF_CORE_COPY_XFPREGS(tsk, elf_xfpregs) dump_task_extended_fpu(tsk, elf_xfpregs) #define VSYSCALL_BASE (__fix_to_virt(FIX_VSYSCALL)) #define VSYSCALL_EHDR ((const struct elfhdr *) VSYSCALL_BASE) #define VSYSCALL_ENTRY ((unsigned long) &__kernel_vsyscall) extern void __kernel_vsyscall; #define ARCH_DLINFO \ do { \ NEW_AUX_ENT(AT_SYSINFO, VSYSCALL_ENTRY); \ NEW_AUX_ENT(AT_SYSINFO_EHDR, VSYSCALL_BASE); \ } while (0) /* * These macros parameterize elf_core_dump in fs/binfmt_elf.c to write out * extra segments containing the vsyscall DSO contents. Dumping its * contents makes post-mortem fully interpretable later without matching up * the same kernel and hardware config to see what PC values meant. * Dumping its extra ELF program headers includes all the other information * a debugger needs to easily find how the vsyscall DSO was being used. */ #define ELF_CORE_EXTRA_PHDRS (VSYSCALL_EHDR->e_phnum) #define ELF_CORE_WRITE_EXTRA_PHDRS \ do { \ const struct elf_phdr *const vsyscall_phdrs = \ (const struct elf_phdr *) (VSYSCALL_BASE \ + VSYSCALL_EHDR->e_phoff); \ int i; \ Elf32_Off ofs = 0; \ for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \ struct elf_phdr phdr = vsyscall_phdrs[i]; \ if (phdr.p_type == PT_LOAD) { \ BUG_ON(ofs != 0); \ ofs = phdr.p_offset = offset; \ phdr.p_memsz = PAGE_ALIGN(phdr.p_memsz); \ phdr.p_filesz = phdr.p_memsz; \ offset += phdr.p_filesz; \ } \ else \ phdr.p_offset += ofs; \ phdr.p_paddr = 0; /* match other core phdrs */ \ DUMP_WRITE(&phdr, sizeof(phdr)); \ } \ } while (0) #define ELF_CORE_WRITE_EXTRA_DATA \ do { \ const struct elf_phdr *const vsyscall_phdrs = \ (const struct elf_phdr *) (VSYSCALL_BASE \ + VSYSCALL_EHDR->e_phoff); \ int i; \ for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \ if (vsyscall_phdrs[i].p_type == PT_LOAD) \ DUMP_WRITE((void *) vsyscall_phdrs[i].p_vaddr, \ PAGE_ALIGN(vsyscall_phdrs[i].p_memsz)); \ } \ } while (0) #endif #endif