http://www.ousob.com --- Legacy Redefined OuSob - File: /wwwroot/clipx/usr/include/boost/graph/graph_utility.hpp

// //======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= // #ifndef BOOST_GRAPH_UTILITY_HPP #define BOOST_GRAPH_UTILITY_HPP #include <stdlib.h> #include <iostream> #include <algorithm> #include <assert.h> #include <boost/config.hpp> #include <boost/tuple/tuple.hpp> #ifndef BOOST_NO_SLIST # include <slist> // shouldn't have to include this... -JGS #endif #include <boost/graph/graph_traits.hpp> #include <boost/graph/properties.hpp> #include <boost/pending/container_traits.hpp> #include <boost/graph/depth_first_search.hpp> // iota moved to detail/algorithm.hpp #include <boost/detail/algorithm.hpp> namespace boost { // Provide an undirected graph interface alternative to the // the source() and target() edge functions. template <class UndirectedGraph> inline std::pair<typename graph_traits<UndirectedGraph>::vertex_descriptor, typename graph_traits<UndirectedGraph>::vertex_descriptor> incident(typename graph_traits<UndirectedGraph>::edge_descriptor e, UndirectedGraph& g) { return std::make_pair(source(e,g), target(e,g)); } // Provide an undirected graph interface alternative // to the out_edges() function. template <class Graph> inline std::pair<typename graph_traits<Graph>::out_edge_iterator, typename graph_traits<Graph>::out_edge_iterator> incident_edges(typename graph_traits<Graph>::vertex_descriptor u, Graph& g) { return out_edges(u, g); } template <class Graph> inline typename graph_traits<Graph>::vertex_descriptor opposite(typename graph_traits<Graph>::edge_descriptor e, typename graph_traits<Graph>::vertex_descriptor v, const Graph& g) { typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor; if (v == source(e, g)) return target(e, g); else if (v == target(e, g)) return source(e, g); else return vertex_descriptor(); } //=========================================================================== // Some handy predicates template <typename Vertex, typename Graph> struct incident_from_predicate { incident_from_predicate(Vertex u, const Graph& g) : m_u(u), m_g(g) { } template <class Edge> bool operator()(const Edge& e) const { return source(e, m_g) == m_u; } Vertex m_u; const Graph& m_g; }; template <typename Vertex, typename Graph> inline incident_from_predicate<Vertex, Graph> incident_from(Vertex u, const Graph& g) { return incident_from_predicate<Vertex, Graph>(u, g); } template <typename Vertex, typename Graph> struct incident_to_predicate { incident_to_predicate(Vertex u, const Graph& g) : m_u(u), m_g(g) { } template <class Edge> bool operator()(const Edge& e) const { return target(e, m_g) == m_u; } Vertex m_u; const Graph& m_g; }; template <typename Vertex, typename Graph> inline incident_to_predicate<Vertex, Graph> incident_to(Vertex u, const Graph& g) { return incident_to_predicate<Vertex, Graph>(u, g); } template <typename Vertex, typename Graph> struct incident_on_predicate { incident_on_predicate(Vertex u, const Graph& g) : m_u(u), m_g(g) { } template <class Edge> bool operator()(const Edge& e) const { return source(e, m_g) == m_u || target(e, m_g) == m_u; } Vertex m_u; const Graph& m_g; }; template <typename Vertex, typename Graph> inline incident_on_predicate<Vertex, Graph> incident_on(Vertex u, const Graph& g) { return incident_on_predicate<Vertex, Graph>(u, g); } template <typename Vertex, typename Graph> struct connects_predicate { connects_predicate(Vertex u, Vertex v, const Graph& g) : m_u(u), m_v(v), m_g(g) { } template <class Edge> bool operator()(const Edge& e) const { if (is_directed(m_g)) return source(e, m_g) == m_u && target(e, m_g) == m_v; else return (source(e, m_g) == m_u && target(e, m_g) == m_v) || (source(e, m_g) == m_v && target(e, m_g) == m_u); } Vertex m_u, m_v; const Graph& m_g; }; template <typename Vertex, typename Graph> inline connects_predicate<Vertex, Graph> connects(Vertex u, Vertex v, const Graph& g) { return connects_predicate<Vertex, Graph>(u, v, g); } // Need to convert all of these printing functions to take an ostream object // -JGS template <class IncidenceGraph, class Name> void print_in_edges(const IncidenceGraph& G, Name name) { typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end; for (tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) { std::cout << get(name,*ui) << " <-- "; typename graph_traits<IncidenceGraph> ::in_edge_iterator ei, ei_end; for(tie(ei,ei_end) = in_edges(*ui,G); ei != ei_end; ++ei) std::cout << get(name,source(*ei,G)) << " "; std::cout << std::endl; } } template <class IncidenceGraph, class Name> void print_graph_dispatch(const IncidenceGraph& G, Name name, directed_tag) { typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end; for (tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) { std::cout << get(name,*ui) << " --> "; typename graph_traits<IncidenceGraph> ::out_edge_iterator ei, ei_end; for(tie(ei,ei_end) = out_edges(*ui,G); ei != ei_end; ++ei) std::cout << get(name,target(*ei,G)) << " "; std::cout << std::endl; } } template <class IncidenceGraph, class Name> void print_graph_dispatch(const IncidenceGraph& G, Name name, undirected_tag) { typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end; for (tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) { std::cout << get(name,*ui) << " <--> "; typename graph_traits<IncidenceGraph> ::out_edge_iterator ei, ei_end; for(tie(ei,ei_end) = out_edges(*ui,G); ei != ei_end; ++ei) std::cout << get(name,target(*ei,G)) << " "; std::cout << std::endl; } } template <class IncidenceGraph, class Name> void print_graph(const IncidenceGraph& G, Name name) { typedef typename graph_traits<IncidenceGraph> ::directed_category Cat; print_graph_dispatch(G, name, Cat()); } template <class IncidenceGraph> void print_graph(const IncidenceGraph& G) { print_graph(G, get(vertex_index, G)); } template <class EdgeListGraph, class Name> void print_edges(const EdgeListGraph& G, Name name) { typename graph_traits<EdgeListGraph>::edge_iterator ei, ei_end; for (tie(ei, ei_end) = edges(G); ei != ei_end; ++ei) std::cout << "(" << get(name, source(*ei, G)) << "," << get(name, target(*ei, G)) << ") "; std::cout << std::endl; } template <class EdgeListGraph, class VertexName, class EdgeName> void print_edges2(const EdgeListGraph& G, VertexName vname, EdgeName ename) { typename graph_traits<EdgeListGraph>::edge_iterator ei, ei_end; for (tie(ei, ei_end) = edges(G); ei != ei_end; ++ei) std::cout << get(ename, *ei) << "(" << get(vname, source(*ei, G)) << "," << get(vname, target(*ei, G)) << ") "; std::cout << std::endl; } template <class VertexListGraph, class Name> void print_vertices(const VertexListGraph& G, Name name) { typename graph_traits<VertexListGraph>::vertex_iterator vi,vi_end; for (tie(vi,vi_end) = vertices(G); vi != vi_end; ++vi) std::cout << get(name,*vi) << " "; std::cout << std::endl; } template <class Graph, class Vertex> bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, bidirectional_tag) { typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor; typename graph_traits<Graph>::adjacency_iterator vi, viend, adj_found; tie(vi, viend) = adjacent_vertices(a, g); adj_found = std::find(vi, viend, b); if (adj_found == viend) return false; typename graph_traits<Graph>::out_edge_iterator oi, oiend, out_found; tie(oi, oiend) = out_edges(a, g); out_found = std::find_if(oi, oiend, incident_to(b, g)); if (out_found == oiend) return false; typename graph_traits<Graph>::in_edge_iterator ii, iiend, in_found; tie(ii, iiend) = in_edges(b, g); in_found = std::find_if(ii, iiend, incident_from(a, g)); if (in_found == iiend) return false; return true; } template <class Graph, class Vertex> bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, directed_tag) { typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor; typename graph_traits<Graph>::adjacency_iterator vi, viend, found; tie(vi, viend) = adjacent_vertices(a, g); #if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 && defined(__SGI_STL_PORT) // Getting internal compiler error with std::find() found = viend; for (; vi != viend; ++vi) if (*vi == b) { found = vi; break; } #else found = std::find(vi, viend, b); #endif if ( found == viend ) return false; typename graph_traits<Graph>::out_edge_iterator oi, oiend, out_found; tie(oi, oiend) = out_edges(a, g); #if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 && defined(__SGI_STL_PORT) // Getting internal compiler error with std::find() out_found = oiend; for (; oi != oiend; ++oi) if (target(*oi, g) == b) { out_found = oi; break; } #else out_found = std::find_if(oi, oiend, incident_to(b, g)); #endif if (out_found == oiend) return false; return true; } template <class Graph, class Vertex> bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, undirected_tag) { return is_adj_dispatch(g, a, b, directed_tag()); } template <class Graph, class Vertex> bool is_adjacent(Graph& g, Vertex a, Vertex b) { typedef typename graph_traits<Graph>::directed_category Cat; return is_adj_dispatch(g, a, b, Cat()); } template <class Graph, class Edge> bool in_edge_set(Graph& g, Edge e) { typename Graph::edge_iterator ei, ei_end, found; tie(ei, ei_end) = edges(g); found = std::find(ei, ei_end, e); return found != ei_end; } template <class Graph, class Vertex> bool in_vertex_set(Graph& g, Vertex v) { typename Graph::vertex_iterator vi, vi_end, found; tie(vi, vi_end) = vertices(g); found = std::find(vi, vi_end, v); return found != vi_end; } template <class Graph, class Vertex> bool in_edge_set(Graph& g, Vertex u, Vertex v) { typename Graph::edge_iterator ei, ei_end; for (tie(ei,ei_end) = edges(g); ei != ei_end; ++ei) if (source(*ei,g) == u && target(*ei,g) == v) return true; return false; } // is x a descendant of y? template <typename ParentMap> inline bool is_descendant (typename property_traits<ParentMap>::value_type x, typename property_traits<ParentMap>::value_type y, ParentMap parent) { if (get(parent, x) == x) // x is the root of the tree return false; else if (get(parent, x) == y) return true; else return is_descendant(get(parent, x), y, parent); } // is y reachable from x? template <typename IncidenceGraph, typename VertexColorMap> inline bool is_reachable (typename graph_traits<IncidenceGraph>::vertex_descriptor x, typename graph_traits<IncidenceGraph>::vertex_descriptor y, const IncidenceGraph& g, VertexColorMap color) // should start out white for every vertex { typedef typename property_traits<VertexColorMap>::value_type ColorValue; dfs_visitor<> vis; depth_first_visit(g, x, vis, color); return get(color, y) != color_traits<ColorValue>::white(); } // Is the undirected graph connected? // Is the directed graph strongly connected? template <typename VertexListGraph, typename VertexColorMap> inline bool is_connected(const VertexListGraph& g, VertexColorMap color) { typedef typename property_traits<VertexColorMap>::value_type ColorValue; typedef color_traits<ColorValue> Color; typename graph_traits<VertexListGraph>::vertex_iterator ui, ui_end, vi, vi_end, ci, ci_end; for (tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) if (*ui != *vi) { for (tie(ci, ci_end) = vertices(g); ci != ci_end; ++ci) put(color, *ci, Color::white()); if (! is_reachable(*ui, *vi, color)) return false; } return true; } template <typename Graph> bool is_self_loop (typename graph_traits<Graph>::edge_descriptor e, const Graph& g) { return source(e, g) == target(e, g); } template <class T1, class T2> std::pair<T1,T2> make_list(const T1& t1, const T2& t2) { return std::make_pair(t1, t2); } template <class T1, class T2, class T3> std::pair<T1,std::pair<T2,T3> > make_list(const T1& t1, const T2& t2, const T3& t3) { return std::make_pair(t1, std::make_pair(t2, t3)); } template <class T1, class T2, class T3, class T4> std::pair<T1,std::pair<T2,std::pair<T3,T4> > > make_list(const T1& t1, const T2& t2, const T3& t3, const T4& t4) { return std::make_pair(t1, std::make_pair(t2, std::make_pair(t3, t4))); } template <class T1, class T2, class T3, class T4, class T5> std::pair<T1,std::pair<T2,std::pair<T3,std::pair<T4,T5> > > > make_list(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5) { return std::make_pair(t1, std::make_pair(t2, std::make_pair(t3, std::make_pair(t4, t5)))); } } /* namespace boost */ #endif /* BOOST_GRAPH_UTILITY_HPP*/