http://www.ousob.com --- Legacy Redefined OuSob - File: /wwwroot/clipx/usr/include/boost/graph/leda_graph.hpp

//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Copyright 2004 The Trustees of Indiana University. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_GRAPH_LEDA_HPP #define BOOST_GRAPH_LEDA_HPP #include <boost/config.hpp> #include <boost/iterator/iterator_facade.hpp> #include <boost/graph/graph_traits.hpp> #include <boost/graph/properties.hpp> #include <LEDA/graph.h> #include <LEDA/node_array.h> #include <LEDA/node_map.h> // The functions and classes in this file allows the user to // treat a LEDA GRAPH object as a boost graph "as is". No // wrapper is needed for the GRAPH object. // Remember to define LEDA_PREFIX so that LEDA types such as // leda_edge show up as "leda_edge" and not just "edge". // Warning: this implementation relies on partial specialization // for the graph_traits class (so it won't compile with Visual C++) // Warning: this implementation is in alpha and has not been tested #if !defined BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION namespace boost { struct leda_graph_traversal_category : public virtual bidirectional_graph_tag, public virtual adjacency_graph_tag, public virtual vertex_list_graph_tag { }; template <class vtype, class etype> struct graph_traits< leda::GRAPH<vtype,etype> > { typedef leda_node vertex_descriptor; typedef leda_edge edge_descriptor; class adjacency_iterator : public iterator_facade<adjacency_iterator, leda_node, bidirectional_traversal_tag, leda_node, const leda_node*> { public: explicit adjacency_iterator(leda_edge edge = 0) : base(edge) {} private: leda_node dereference() const { return leda::target(base); } bool equal(const adjacency_iterator& other) const { return base == other.base; } void increment() { base = Succ_Adj_Edge(base, 0); } void decrement() { base = Pred_Adj_Edge(base, 0); } leda_edge base; friend class iterator_core_access; }; class out_edge_iterator : public iterator_facade<out_edge_iterator, leda_edge, bidirectional_traversal_tag, const leda_edge&, const leda_edge*> { public: explicit out_edge_iterator(leda_edge edge = 0) : base(edge) {} private: const leda_edge& dereference() const { return base; } bool equal(const out_edge_iterator& other) const { return base == other.base; } void increment() { base = Succ_Adj_Edge(base, 0); } void decrement() { base = Pred_Adj_Edge(base, 0); } leda_edge base; friend class iterator_core_access; }; class in_edge_iterator : public iterator_facade<in_edge_iterator, leda_edge, bidirectional_traversal_tag, const leda_edge&, const leda_edge*> { public: explicit in_edge_iterator(leda_edge edge = 0) : base(edge) {} private: const leda_edge& dereference() const { return base; } bool equal(const in_edge_iterator& other) const { return base == other.base; } void increment() { base = Succ_Adj_Edge(base, 1); } void decrement() { base = Pred_Adj_Edge(base, 1); } leda_edge base; friend class iterator_core_access; }; class vertex_iterator : public iterator_facade<vertex_iterator, leda_node, bidirectional_traversal_tag, const leda_node&, const leda_node*> { public: vertex_iterator(leda_node node = 0, const leda::GRAPH<vtype, etype>* g = 0) : base(node), g(g) {} private: const leda_node& dereference() const { return base; } bool equal(const vertex_iterator& other) const { return base == other.base; } void increment() { base = g->succ_node(base); } void decrement() { base = g->pred_node(base); } leda_node base; const leda::GRAPH<vtype, etype>* g; friend class iterator_core_access; }; typedef directed_tag directed_category; typedef allow_parallel_edge_tag edge_parallel_category; // not sure here typedef leda_graph_traversal_category traversal_category; typedef int vertices_size_type; typedef int edges_size_type; typedef int degree_size_type; }; template <class vtype, class etype> struct vertex_property< leda::GRAPH<vtype,etype> > { typedef vtype type; }; template <class vtype, class etype> struct edge_property< leda::GRAPH<vtype,etype> > { typedef etype type; }; } // namespace boost #endif namespace boost { template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, const leda::GRAPH<vtype,etype>& g) { return source(e); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, const leda::GRAPH<vtype,etype>& g) { return target(e); } template <class vtype, class etype> inline std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator, typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator > vertices(const leda::GRAPH<vtype,etype>& g) { typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator Iter; return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) ); } // no edges(g) function template <class vtype, class etype> inline std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator, typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator > out_edges( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>& g) { typedef typename graph_traits< leda::GRAPH<vtype,etype> > ::out_edge_iterator Iter; return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) ); } template <class vtype, class etype> inline std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator, typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator > in_edges( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>& g) { typedef typename graph_traits< leda::GRAPH<vtype,etype> > ::in_edge_iterator Iter; return std::make_pair( Iter(First_Adj_Edge(u,1)), Iter(0) ); } template <class vtype, class etype> inline std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator, typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator > adjacent_vertices( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>& g) { typedef typename graph_traits< leda::GRAPH<vtype,etype> > ::adjacency_iterator Iter; return std::make_pair( Iter(First_Adj_Edge(u,0)), Iter(0) ); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type num_vertices(const leda::GRAPH<vtype,etype>& g) { return g.number_of_nodes(); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type num_edges(const leda::GRAPH<vtype,etype>& g) { return g.number_of_edges(); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type out_degree( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>&) { return outdeg(u); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type in_degree( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>&) { return indeg(u); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type degree( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, const leda::GRAPH<vtype,etype>&) { return outdeg(u) + indeg(u); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor add_vertex(leda::GRAPH<vtype,etype>& g) { return g.new_node(); } template <class vtype, class etype> typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g) { return g.new_node(vp); } // Hmm, LEDA doesn't have the equivalent of clear_vertex() -JGS // need to write an implementation template <class vtype, class etype> void clear_vertex( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, leda::GRAPH<vtype,etype>& g) { g.del_node(u); } template <class vtype, class etype> void remove_vertex( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, leda::GRAPH<vtype,etype>& g) { g.del_node(u); } template <class vtype, class etype> std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, bool> add_edge( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, leda::GRAPH<vtype,etype>& g) { return std::make_pair(g.new_edge(u, v), true); } template <class vtype, class etype> std::pair< typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, bool> add_edge( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, const etype& et, leda::GRAPH<vtype,etype>& g) { return std::make_pair(g.new_edge(u, v, et), true); } template <class vtype, class etype> void remove_edge( typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, leda::GRAPH<vtype,etype>& g) { typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator i,iend; for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i) if (target(*i,g) == v) g.del_edge(*i); } template <class vtype, class etype> void remove_edge( typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, leda::GRAPH<vtype,etype>& g) { g.del_edge(e); } //=========================================================================== // property maps class leda_graph_id_map : public put_get_helper<int, leda_graph_id_map> { public: typedef readable_property_map_tag category; typedef int value_type; typedef int reference; typedef leda_node key_type; leda_graph_id_map() { } template <class T> long operator[](T x) const { return x->id(); } }; template <class vtype, class etype> inline leda_graph_id_map get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) { return leda_graph_id_map(); } template <class vtype, class etype> inline leda_graph_id_map get(edge_index_t, const leda::GRAPH<vtype, etype>& g) { return leda_graph_id_map(); } template <class Tag> struct leda_property_map { }; template <> struct leda_property_map<vertex_index_t> { template <class vtype, class etype> struct bind_ { typedef leda_graph_id_map type; typedef leda_graph_id_map const_type; }; }; template <> struct leda_property_map<edge_index_t> { template <class vtype, class etype> struct bind_ { typedef leda_graph_id_map type; typedef leda_graph_id_map const_type; }; }; template <class Data, class DataRef, class GraphPtr> class leda_graph_data_map : public put_get_helper<DataRef, leda_graph_data_map<Data,DataRef,GraphPtr> > { public: typedef Data value_type; typedef DataRef reference; typedef void key_type; typedef lvalue_property_map_tag category; leda_graph_data_map(GraphPtr g) : m_g(g) { } template <class NodeOrEdge> DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; } protected: GraphPtr m_g; }; template <> struct leda_property_map<vertex_all_t> { template <class vtype, class etype> struct bind_ { typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type; typedef leda_graph_data_map<vtype, const vtype&, const leda::GRAPH<vtype, etype>*> const_type; }; }; template <class vtype, class etype > inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type get(vertex_all_t, leda::GRAPH<vtype, etype>& g) { typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type pmap_type; return pmap_type(&g); } template <class vtype, class etype > inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) { typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type pmap_type; return pmap_type(&g); } template <> struct leda_property_map<edge_all_t> { template <class vtype, class etype> struct bind_ { typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type; typedef leda_graph_data_map<etype, const etype&, const leda::GRAPH<vtype, etype>*> const_type; }; }; template <class vtype, class etype > inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type get(edge_all_t, leda::GRAPH<vtype, etype>& g) { typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type pmap_type; return pmap_type(&g); } template <class vtype, class etype > inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type get(edge_all_t, const leda::GRAPH<vtype, etype>& g) { typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type pmap_type; return pmap_type(&g); } // property map interface to the LEDA node_array class template <class E, class ERef, class NodeMapPtr> class leda_node_property_map : public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> > { public: typedef E value_type; typedef ERef reference; typedef leda_node key_type; typedef lvalue_property_map_tag category; leda_node_property_map(NodeMapPtr a) : m_array(a) { } ERef operator[](leda_node n) const { return (*m_array)[n]; } protected: NodeMapPtr m_array; }; template <class E> leda_node_property_map<E, const E&, const leda_node_array<E>*> make_leda_node_property_map(const leda_node_array<E>& a) { typedef leda_node_property_map<E, const E&, const leda_node_array<E>*> pmap_type; return pmap_type(&a); } template <class E> leda_node_property_map<E, E&, leda_node_array<E>*> make_leda_node_property_map(leda_node_array<E>& a) { typedef leda_node_property_map<E, E&, leda_node_array<E>*> pmap_type; return pmap_type(&a); } template <class E> leda_node_property_map<E, const E&, const leda_node_map<E>*> make_leda_node_property_map(const leda_node_map<E>& a) { typedef leda_node_property_map<E,const E&,const leda_node_map<E>*> pmap_type; return pmap_type(&a); } template <class E> leda_node_property_map<E, E&, leda_node_map<E>*> make_leda_node_property_map(leda_node_map<E>& a) { typedef leda_node_property_map<E, E&, leda_node_map<E>*> pmap_type; return pmap_type(&a); } // g++ 'enumeral_type' in template unification not implemented workaround template <class vtype, class etype, class Tag> struct property_map<leda::GRAPH<vtype, etype>, Tag> { typedef typename leda_property_map<Tag>::template bind_<vtype, etype> map_gen; typedef typename map_gen::type type; typedef typename map_gen::const_type const_type; }; template <class vtype, class etype, class PropertyTag, class Key> inline typename boost::property_traits< typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type >::value_type get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) { return get(get(p, g), key); } template <class vtype, class etype, class PropertyTag, class Key,class Value> inline void put(PropertyTag p, leda::GRAPH<vtype, etype>& g, const Key& key, const Value& value) { typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map; Map pmap = get(p, g); put(pmap, key, value); } } // namespace boost #endif // BOOST_GRAPH_LEDA_HPP