http://www.ousob.com --- Legacy Redefined OuSob - File: /wwwroot/clipx/usr/include/boost/graph/transitive_closure.hpp

// Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su> // Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu> // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // NOTE: this final is generated by libs/graph/doc/transitive_closure.w #ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP #define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP #include <vector> #include <algorithm> // for std::min and std::max #include <functional> #include <boost/config.hpp> #include <boost/bind.hpp> #include <boost/graph/vector_as_graph.hpp> #include <boost/graph/strong_components.hpp> #include <boost/graph/topological_sort.hpp> #include <boost/graph/graph_concepts.hpp> #include <boost/graph/named_function_params.hpp> namespace boost { namespace detail { inline void union_successor_sets(const std::vector < std::size_t > &s1, const std::vector < std::size_t > &s2, std::vector < std::size_t > &s3) { BOOST_USING_STD_MIN(); for (std::size_t k = 0; k < s1.size(); ++k) s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]); } } // namespace detail namespace detail { template < typename Container, typename ST = std::size_t, typename VT = typename Container::value_type > struct subscript_t:public std::unary_function < ST, VT > { typedef VT& result_type; subscript_t(Container & c):container(&c) { } VT & operator() (const ST & i) const { return (*container)[i]; } protected: Container * container; }; template < typename Container > subscript_t < Container > subscript(Container & c) { return subscript_t < Container > (c); } } // namespace detail template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap, typename VertexIndexMap > void transitive_closure(const Graph & g, GraphTC & tc, G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map) { if (num_vertices(g) == 0) return; typedef typename graph_traits < Graph >::vertex_descriptor vertex; typedef typename graph_traits < Graph >::edge_descriptor edge; typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator; typedef typename property_traits < VertexIndexMap >::value_type size_type; typedef typename graph_traits < Graph >::adjacency_iterator adjacency_iterator; function_requires < VertexListGraphConcept < Graph > >(); function_requires < AdjacencyGraphConcept < Graph > >(); function_requires < VertexMutableGraphConcept < GraphTC > >(); function_requires < EdgeMutableGraphConcept < GraphTC > >(); function_requires < ReadablePropertyMapConcept < VertexIndexMap, vertex > >(); typedef size_type cg_vertex; std::vector < cg_vertex > component_number_vec(num_vertices(g)); iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& > component_number(&component_number_vec[0], index_map); int num_scc = strong_components(g, component_number, vertex_index_map(index_map)); std::vector < std::vector < vertex > >components; build_component_lists(g, num_scc, component_number, components); typedef std::vector<std::vector<cg_vertex> > CG_t; CG_t CG(num_scc); for (cg_vertex s = 0; s < components.size(); ++s) { std::vector < cg_vertex > adj; for (size_type i = 0; i < components[s].size(); ++i) { vertex u = components[s][i]; adjacency_iterator v, v_end; for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) { cg_vertex t = component_number[*v]; if (s != t) // Avoid loops in the condensation graph adj.push_back(t); } } std::sort(adj.begin(), adj.end()); typename std::vector<cg_vertex>::iterator di = std::unique(adj.begin(), adj.end()); if (di != adj.end()) adj.erase(di, adj.end()); CG[s] = adj; } std::vector<cg_vertex> topo_order; std::vector<cg_vertex> topo_number(num_vertices(CG)); topological_sort(CG, std::back_inserter(topo_order), vertex_index_map(identity_property_map())); std::reverse(topo_order.begin(), topo_order.end()); size_type n = 0; for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin(); iter != topo_order.end(); ++iter) topo_number[*iter] = n++; for (size_type i = 0; i < num_vertices(CG); ++i) std::sort(CG[i].begin(), CG[i].end(), boost::bind(std::less<cg_vertex>(), boost::bind(detail::subscript(topo_number), _1), boost::bind(detail::subscript(topo_number), _2))); std::vector<std::vector<cg_vertex> > chains; { std::vector<cg_vertex> in_a_chain(num_vertices(CG)); for (typename std::vector<cg_vertex>::iterator i = topo_order.begin(); i != topo_order.end(); ++i) { cg_vertex v = *i; if (!in_a_chain[v]) { chains.resize(chains.size() + 1); std::vector<cg_vertex>& chain = chains.back(); for (;;) { chain.push_back(v); in_a_chain[v] = true; typename graph_traits<CG_t>::adjacency_iterator adj_first, adj_last; tie(adj_first, adj_last) = adjacent_vertices(v, CG); typename graph_traits<CG_t>::adjacency_iterator next = std::find_if(adj_first, adj_last, std::not1(detail::subscript(in_a_chain))); if (next != adj_last) v = *next; else break; // end of chain, dead-end } } } } std::vector<size_type> chain_number(num_vertices(CG)); std::vector<size_type> pos_in_chain(num_vertices(CG)); for (size_type i = 0; i < chains.size(); ++i) for (size_type j = 0; j < chains[i].size(); ++j) { cg_vertex v = chains[i][j]; chain_number[v] = i; pos_in_chain[v] = j; } cg_vertex inf = (std::numeric_limits< cg_vertex >::max)(); std::vector<std::vector<cg_vertex> > successors(num_vertices(CG), std::vector<cg_vertex> (chains.size(), inf)); for (typename std::vector<cg_vertex>::reverse_iterator i = topo_order.rbegin(); i != topo_order.rend(); ++i) { cg_vertex u = *i; typename graph_traits<CG_t>::adjacency_iterator adj, adj_last; for (tie(adj, adj_last) = adjacent_vertices(u, CG); adj != adj_last; ++adj) { cg_vertex v = *adj; if (topo_number[v] < successors[u][chain_number[v]]) { // Succ(u) = Succ(u) U Succ(v) detail::union_successor_sets(successors[u], successors[v], successors[u]); // Succ(u) = Succ(u) U {v} successors[u][chain_number[v]] = topo_number[v]; } } } for (size_type i = 0; i < CG.size(); ++i) CG[i].clear(); for (size_type i = 0; i < CG.size(); ++i) for (size_type j = 0; j < chains.size(); ++j) { size_type topo_num = successors[i][j]; if (topo_num < inf) { cg_vertex v = topo_order[topo_num]; for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k) CG[i].push_back(chains[j][k]); } } // Add vertices to the transitive closure graph typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex; { vertex_iterator i, i_end; for (tie(i, i_end) = vertices(g); i != i_end; ++i) g_to_tc_map[*i] = add_vertex(tc); } // Add edges between all the vertices in two adjacent SCCs typename graph_traits<CG_t>::vertex_iterator si, si_end; for (tie(si, si_end) = vertices(CG); si != si_end; ++si) { cg_vertex s = *si; typename graph_traits<CG_t>::adjacency_iterator i, i_end; for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) { cg_vertex t = *i; for (size_type k = 0; k < components[s].size(); ++k) for (size_type l = 0; l < components[t].size(); ++l) add_edge(g_to_tc_map[components[s][k]], g_to_tc_map[components[t][l]], tc); } } // Add edges connecting all vertices in a SCC for (size_type i = 0; i < components.size(); ++i) if (components[i].size() > 1) for (size_type k = 0; k < components[i].size(); ++k) for (size_type l = 0; l < components[i].size(); ++l) { vertex u = components[i][k], v = components[i][l]; add_edge(g_to_tc_map[u], g_to_tc_map[v], tc); } // Find loopbacks in the original graph. // Need to add it to transitive closure. { vertex_iterator i, i_end; for (tie(i, i_end) = vertices(g); i != i_end; ++i) { adjacency_iterator ab, ae; for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab) { if (*ab == *i) if (components[component_number[*i]].size() == 1) add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc); } } } } template <typename Graph, typename GraphTC> void transitive_closure(const Graph & g, GraphTC & tc) { if (num_vertices(g) == 0) return; typedef typename property_map<Graph, vertex_index_t>::const_type VertexIndexMap; VertexIndexMap index_map = get(vertex_index, g); typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex; std::vector<tc_vertex> to_tc_vec(num_vertices(g)); iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&> g_to_tc_map(&to_tc_vec[0], index_map); transitive_closure(g, tc, g_to_tc_map, index_map); } namespace detail { template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap, typename VertexIndexMap> void transitive_closure_dispatch (const Graph & g, GraphTC & tc, G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map) { typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex; typename std::vector < tc_vertex >::size_type n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1; std::vector < tc_vertex > to_tc_vec(n); transitive_closure (g, tc, choose_param(g_to_tc_map, make_iterator_property_map (to_tc_vec.begin(), index_map, to_tc_vec[0])), index_map); } } // namespace detail template < typename Graph, typename GraphTC, typename P, typename T, typename R > void transitive_closure(const Graph & g, GraphTC & tc, const bgl_named_params < P, T, R > &params) { if (num_vertices(g) == 0) return; detail::transitive_closure_dispatch (g, tc, get_param(params, orig_to_copy_t()), choose_const_pmap(get_param(params, vertex_index), g, vertex_index) ); } template < typename G > void warshall_transitive_closure(G & g) { typedef typename graph_traits < G >::vertex_descriptor vertex; typedef typename graph_traits < G >::vertex_iterator vertex_iterator; function_requires < AdjacencyMatrixConcept < G > >(); function_requires < EdgeMutableGraphConcept < G > >(); // Matrix form: // for k // for i // if A[i,k] // for j // A[i,j] = A[i,j] | A[k,j] vertex_iterator ki, ke, ii, ie, ji, je; for (tie(ki, ke) = vertices(g); ki != ke; ++ki) for (tie(ii, ie) = vertices(g); ii != ie; ++ii) if (edge(*ii, *ki, g).second) for (tie(ji, je) = vertices(g); ji != je; ++ji) if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) { add_edge(*ii, *ji, g); } } template < typename G > void warren_transitive_closure(G & g) { using namespace boost; typedef typename graph_traits < G >::vertex_descriptor vertex; typedef typename graph_traits < G >::vertex_iterator vertex_iterator; function_requires < AdjacencyMatrixConcept < G > >(); function_requires < EdgeMutableGraphConcept < G > >(); // Make sure second loop will work if (num_vertices(g) == 0) return; // for i = 2 to n // for k = 1 to i - 1 // if A[i,k] // for j = 1 to n // A[i,j] = A[i,j] | A[k,j] vertex_iterator ic, ie, jc, je, kc, ke; for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic) for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc) if (edge(*ic, *kc, g).second) for (tie(jc, je) = vertices(g); jc != je; ++jc) if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { add_edge(*ic, *jc, g); } // for i = 1 to n - 1 // for k = i + 1 to n // if A[i,k] // for j = 1 to n // A[i,j] = A[i,j] | A[k,j] for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic) for (kc = ic, ke = ie, ++kc; kc != ke; ++kc) if (edge(*ic, *kc, g).second) for (tie(jc, je) = vertices(g); jc != je; ++jc) if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { add_edge(*ic, *jc, g); } } } // namespace boost #endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP